Energy Conservation and Urban Heat Island Mitigation Effects by Solar Reflective Coating to an Automobile

International Workshop on Countermeasures to Urban Heat Islands (Tokyo, Japan)
August 3rd, 2006

Tomohiko Ihara
National Institute of Advanced Industrial Science and Technology (AIST)

ihara-t@aist.go.jp
http://unit.aist.go.jp/lca-center/
Overview

1. Introduction

2. Solar reflective paint (SRP)

3. Application of automobile body coating

4. Evaluation of energy conservation effect

5. Evaluation of urban heat island mitigation effect

6. Conclusion
1. Introduction

In Japan...

- Kyoto Protocol Target: To reduce GHG emissions by 6% from 1990 level.
- CO$_2$ emissions from the transportation sector occupied 20% of the total.

The transportation sector also must make more efforts to achieve the target.
1. Introduction

Energy-saving measures in the transportation sector

- **Automobile**
 - Improvement of *actual fuel efficiency (energy consumptions)*
 - Spread of low emission vehicles
 - Electric vehicle
 - Hybrid electric vehicle

- **Traffic flow**
 - Introduction of intelligent transportation system (ITS)
 - Efficiency of distribution systems

- **Modal shift**
 - Railway transport
 - Marine transport

etc.
1. Introduction

Actual fuel efficiency

May is the best fuel efficiency.

Use of air-conditioner exacerbates actual fuel efficiency. (May is not an air-conditioning season)

Improvement of thermal environment in cars will bring about actual fuel consumptions reduction?
2. Solar reflective paint

We focused on “Solar reflective paint” as one of technologies which improve thermal environment in cars.

◆ Solar reflective paint (SRP)
 ■ About solar reflective paint
 ■ SRP has high solar reflectivity and brings about cooling load reduction. (High reflectivity against near-infrared ray)

 ■ It contributes both of energy conservation by cooling demand reduction and urban heat island mitigation.

 ■ Introduction to buildings, mainly
 ■ Especially, to plants and warehouses
 ■ SRP is often called as “Heat shield paint” or “High albedo paint”.
2. Solar reflective paint

Solar spectrum

<table>
<thead>
<tr>
<th></th>
<th>Ultra-violet</th>
<th>Visible</th>
<th>Infrared</th>
</tr>
</thead>
</table>

Absorption by the atmosphere

50% of solar radiation energy contain in infrared rays.

If reflectivities in a visible region is the same and only ones in a infrared region is raised, a reflective paint with same color can be made.
2. Solar reflective paint

◆ Application of SRP to a building surface
2. Solar reflective paint

Solar reflectivity and color of SRP

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Infrared (50% of solar energy)</th>
<th>Visible (47%)</th>
<th>Ultra-violet (3%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Normal paint
- SRP (Solar Reflective Paint)
- Dark blue mica

Rise of reflectivities in only infrared region

Spectral reflectivity $\rho_\lambda [%]$

- Same color
- Normal paint
- SRP

Solar reflectivity [%]

- Normal: 9.8%
- SRP: 20.1%

10.3% up
3. Application of automobile body coating

◆ How to apply SRP to an automobile body?

- Heat shield sheet
 - PVC sheet including special pigments and ceramics beads.
 - A case in which SRP was installed to rooftops of buses, container trucks, etc., already exists.
 - In a case in which SRP was installed to a daytime expressway bus, air temperature in the bus was reduced by the maximum of 5 degrees C.
 - Making sheets from paints costs very much than simple coating.

![Diagram of Solar rays and SRP application](image.png)
3. Application to automobile body coating

◆ How to apply SRP to an automobile body?

- Heat shield sheet

- Simple coating
 = Solar reflective coating to an automobile body
 - Replacement from normal pigments to special-formed pigments in automobile body paints
 - Hollow ceramic beads are not included.
3. Application to automobile body coating

Composition of automobile body coating

Solar radiation

- Finish clear coating (Ac/MF-resin, etc)
- Finish base coating (Ac/MF)
- Middle coating (PE/MF-resin)
- Electrocoating
- Surface processing
- Automobile body (Steel plate)

- Use of various pigments for various coloring
3. Application to automobile body coating

 ◆ Solar reflective coating to automobile body

 - Hollow ceramic beads are NOT available, because automobile body coating consists of thin films.
 - Normal pigments in each coating layer are replaced to special pigments. (Below layers’ reflectivity also have some effects to a total reflectivity, because each layers’ transmittance is not zero.)
3. Application to automobile body coating

◆ Solar reflectivity and color of SRP

<table>
<thead>
<tr>
<th>Wavelength [nm]</th>
<th>Infrared (50% of solar energy)</th>
<th>Visible (47%)</th>
<th>Ultra-violet (3%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>40</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>80</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Spectral reflectivity $\rho_\lambda [%]$

- Same color
- SRP: Raise of reflectivities on only an infrared region

Color is well reproduced. (Special pigments of the carbon black is found.)

380 3. Application to automobile body coating
SRP
Dark blue mica

Normal
Normal SRP
9.8%
20.1% up

Normal paint
3. Application to automobile body coating

Increase of solar reflectivity by replacement to SRP

<table>
<thead>
<tr>
<th>Color</th>
<th>Normal Reflectivity</th>
<th>Replacement to SRP in electro- and middle coatings</th>
<th>+ Replacement to SRP in finish base coating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>ΔR</td>
<td>R</td>
</tr>
<tr>
<td>#040</td>
<td>69.0%</td>
<td>76.0% +7.0%</td>
<td>83.6%</td>
</tr>
<tr>
<td>#1C3</td>
<td>18.4%</td>
<td>19.3% +0.9%</td>
<td>48.5%</td>
</tr>
<tr>
<td>#1D9</td>
<td>51.9%</td>
<td>52.7% +0.8%</td>
<td>60.8%</td>
</tr>
<tr>
<td>#1E7</td>
<td>57.5%</td>
<td>59.0% +1.5%</td>
<td>64.3%</td>
</tr>
<tr>
<td>#209</td>
<td>1.5%</td>
<td>2.3% +0.8%</td>
<td>48.4%</td>
</tr>
<tr>
<td>#3P1</td>
<td>46.7%</td>
<td>50.1% +3.4%</td>
<td>50.2%</td>
</tr>
<tr>
<td>#3P2</td>
<td>9.9%</td>
<td>12.1% +2.2%</td>
<td>54.3%</td>
</tr>
<tr>
<td>#6R4</td>
<td>3.5%</td>
<td>4.9% +1.4%</td>
<td>45.2%</td>
</tr>
<tr>
<td>#8P4</td>
<td>8.0%</td>
<td>10.9% +2.9%</td>
<td>50.4%</td>
</tr>
<tr>
<td>#8Q3</td>
<td>39.1%</td>
<td>40.7% +1.6%</td>
<td>54.4%</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Average</td>
<td>46.7%</td>
<td>50.4% +3.7%</td>
<td>64.2%</td>
</tr>
</tbody>
</table>

A solar reflectivity in a standard type of car will increase an average of 17.5%.
4. Evaluation of energy conservation effect

Measurement of thermal environment in cars

- **Purpose**
 - Evaluation of thermal environment in a car coated with SRP, really
 - Investment of automobile heat load simulation program

- **Methodology**
 - Two cars colored with dark blue mica, one is coated with SRP and another is normal coated, were fixed on a sunny place of Tokyo.
 - Surface temperatures, air temperatures in a car and weather conditions were measured.
4. Evaluation of energy conservation effect

Measurement of thermal environment in cars

- Measurement system
 - Measuring
 - Radiometer: EKO MR-40
 - Anemometer: EKO MA-130
 - Thermocouples: Yamari DT20TT
 - Data logging
 - EKO DATAMARK LS-3000PtV, DATAMARK LS-3300PtV
 - EKO CADAC21 9220A, SOLAC V

- Measured item
 - Cars
 - Inside/outside surface temperatures
 - Air temperatures in cars
 - Weather conditions
 - Solar radiation & atmospheric radiation
 - Wind direction & velocity
 - Outdoor air temperature
4. Evaluation of energy conservation effect

◆ Measurement: Thermograph (2006/01/29)

Temperature increase was repressed.
4. Evaluation of energy conservation effect

Measurement: Air temperature in cars (2006/01/27)

- Air temp. in the normal car was the maximum of 40 deg C in the daytime.
- The SRP car brought about surface temp. by 5~10 deg C.
- Air temp. in the SRP car also were reduced the maximum of 3.9~1.6 deg C.
4. Evaluation of energy conservation effect

◆ Automobile heat load simulation program

Simultaneous equations

\[
\begin{bmatrix}
M
\end{bmatrix}
\begin{Bmatrix}
\theta^K
\end{Bmatrix}_{P[i]} = \begin{Bmatrix}
V
\end{Bmatrix}
\]

- Differential equations about \(\theta \) are solved by the backward difference method.
- \(M \) and \(V \) are constants.

Revising from a building program

Output: Air temp./heat extracting

Input:
- Weather conditions
- Automobile specification
- Schedules (air-conditioning, etc.)
4. Evaluation of energy conservation effect

◆ Conditions of automobile specification

Back/front view

Top view

Side view
4. Evaluation of energy conservation effect

Simulation: Investment of simulation program (2006/01/27)

- Measured data in Jan. 27th were used as simulation conditions of weather.
- Simulation results reproduced air temperatures measured in two cars.

Automobile simulation program reproduced actual thermal environment.
4. Evaluation of energy conservation effect

Fuel consumptions simulation

Simulation conditions

- Automobile specification
 - Cars which are used in this experiment.
 - Normal car & SRP car about “Dark blue mica” & “Dark blue” (two colors)

Weather conditions

- Tokyo, Typical year (ref. “Expand AMeDAS Weather data” (AIJ))

Driving conditions

- Two types such as a private vehicle and a commercial vehicle

<table>
<thead>
<tr>
<th>Driving conditions</th>
<th>Private vehicle</th>
<th>Commercial vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yearly mileage [km/y]</td>
<td>10,575</td>
<td>63,113</td>
</tr>
<tr>
<td>Daily mileage [km/d]</td>
<td>43.5</td>
<td>216.9</td>
</tr>
<tr>
<td>Driving time</td>
<td>Mon. ~ Fri., 1.82[h/d]</td>
<td>Mon. ~ Sat., 9.07[h/d]</td>
</tr>
<tr>
<td></td>
<td>Drop-off 7:30~7:45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shopping 11:30~12:00</td>
<td>Working 8:45~17:45</td>
</tr>
<tr>
<td></td>
<td>Shopping 15:00~15:45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pickup 19:15~19:30</td>
<td></td>
</tr>
<tr>
<td>Setting air temp. [deg C]</td>
<td>20(Lower) ~ 25(Upper)</td>
<td></td>
</tr>
</tbody>
</table>

Statistics of yearly average mileage (MLIT)

Average speed in Tokyo pref. 23.9[km/h] (MLIT)

Default schedule from “SCHEDULE” (SHASEJ)
4. Evaluation of energy conservation effect

Simulation: air-conditioning load (when 24-hours driving)

An increase in heating load which is one of demerits on SRP is very small!

- A hermetic body & large ratio of windows in a body
- A small heat capacity

SRP is suitable for automobile body.
4. Evaluation of energy conservation effect

Simulation: fuel consumptions

Objective color:

- Dark blue mica
- Dark blue

Fuel consumptions reduction by SRP

<table>
<thead>
<tr>
<th>Solar reflectivity [%]</th>
<th>Normal</th>
<th>SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3% up</td>
<td>50.4%</td>
<td></td>
</tr>
<tr>
<td>9.8%</td>
<td>20.1%</td>
<td></td>
</tr>
<tr>
<td>8.0%</td>
<td>42.4%</td>
<td></td>
</tr>
</tbody>
</table>

A raise in reflectivity is different in color. (Average: +17.5%)

Translating to actual fuel efficiency...

- In dark blue mica
 - Private: +0.2%
 - Commercial: +0.2%
- In dark blue
 - Private: +0.9%
 - Commercial: +0.2%

will be improved!
4. Evaluation of energy conservation effect

 boca Potential of CO₂ emissions reduction in Japan

Actual fuel improving effect in Tokyo are applied to Japan.
A raise in solar reflectivity by SRP is 17.5%.

In Japan: 150,000 t-CO₂/y

Spread of idling-stop equipments, speed-limiters, etc.
→ 1,100,000 t-CO₂/y
(ex. Idling-stop equipments
Added cost: ¥80,000/car)

SRP which can be introduced under existed plants, is very reasonable.
(Added cost: ¥0~40/car)
5. Evaluation of urban heat island mitigation effect

Urban heat island (UHI) in Tokyo

Heat budget

- Increase in sensible heat flux (←Road asphalting, decrease in water)
- Increase in anthropogenic heat (←From buildings and cars)
- They are almost the same value.

![Graph showing heat budget](image)

- Increase in sensible heat flux: 24.6 W/m²
- Increase in anthropogenic heat: 26.9 W/m²

Automobile energy conservation also contributes to mitigate urban heat island.
5. Evaluation of urban heat island mitigation effect

Urban heat island mitigation effect by SRP

In previous researches

- Increase in solar reflectivity of building surface by installation of SRP
 - Increase in reflection of solar radiation (by increasing albedo in building area)
 - Decrease in anthropogenic sensible heat (by reducing energy for air-conditioning in buildings)

Apply to cars

- Spread of cars coated with SRP
 - Increase in reflection of solar radiation (by increasing albedo in road area)
 - Decrease in anthropogenic sensible heat (by reducing energy for air-conditioning in cars)

To invest the above UHI mitigation effects...

We evaluated a change of urban thermal environment by solar reflectivity of cars.
5. Evaluation of urban heat island mitigation effect

- Urban canopy-building energy simulation program

1-D urban canopy model (CM)

- b: Average building width
- w: Average road width
- $P_w(z)$: Building existence ratio at each vertical mesh level

Building energy model (BEM)

- Solar radiation heat through window
- Ventilation
- Heat conduction from building wall
- Air-conditioning system
- Internal heat
- Cooling loads
- Electricity & City gas
- Exhaust heat

AIST-CM-BEM

Feedback

Air temperature
Air humidity
Wind direction & speed
5. Evaluation of urban heat island mitigation effect

Simulation conditions about albedo & anthropogenic heat

- Road albedo & anthropogenic heat by automobiles

Hourly road albedo [-]

\[
\text{Hourly road albedo [-]} = \frac{(\text{Cars-occupied area}[m^2] \times \text{Car albedo}[-] + \text{Other road area}[m^2] \times \text{Road albedo}[-])}{\text{Total road area}[m^2]}
\]

Hourly cars-occupied area [m^2]

\[
\text{Hourly cars-occupied area [m^2]} = \text{Traffic density [car/km]} \times \text{Length of road [km]} \times \text{One car-occupied area [m^2/car]}
\]

Hourly anthropogenic heat on roads [kW/m^2]

\[
\text{Hourly anthropogenic heat on roads [kW/m^2]} = \text{Traffic density [car/km]} \times \text{Length of roads in an area [km/m^2]} \times \text{Anthropogenic heat exhausted from one car [kW/car]}
\]

- Traffic density

\[
Q = KV
\]

\[
Q = K_{\text{jam}} V \exp \left(-\frac{K_{\text{jam}} V}{e Q_{\text{max}}} \right)
\]

- Variables:
 - \(Q\): Traffic volume [car/h]
 - \(K\): Traffic density [car/km]
 - \(V\): Car velocity [km/h]
 - \(K_{\text{jam}}\): Maximum traffic volume [car/km]
 - \(Q_{\text{max}}\): Maximum traffic density [car/h]

Road conditions: [Road traffic census (MLIT)]
5. Evaluation of urban heat island mitigation effect

◆ Anthropogenic heat exhausted from a car

Conditions:

- **Automobiles**
 - High-reflective car, HRC
 (Reflectivity: 73.69%)
 - vs.
 - Low-reflective car, LRC
 (Reflectivity: 6.43%)

- **Area**
 - Otemachi (Central Tokyo)

- **Duration**
 - 2002/07/28 ~ 2002/08/14

Anthropogenic heat by air-conditioning from HRC was 5 [kW] smaller.
Even if heat by driving is taken into consideration, it is NOT negligible.
5. Evaluation of urban heat island mitigation effect

◆ Simulation: Anthropogenic heat on roads (in Otemachi)

Traffic density [car/km]

Length of roads in the area [km/m²]

Anthropogenic heat exhausted from one car [kW/car]

*All cars in the area are LRC or HRC.

By an increase in a solar reflectivity of cars in the area, anthropogenic heat was reduced by a maximum of 70 [W/m²]
5. Evaluation of urban heat island mitigation effect

- **Simulation: Temperature decrease (HRC vs. LRC)**

- **Ground surface temp.**
- **Air temp. (Height: 3[m])**
- **Air temp. (6[m])**

- **Temperature change [deg C]**

- **Temperature decrease (total)**
- **(due to reduction in anthropogenic heat)**
- **(due to high albedo)**

- By raising solar reflectivity of automobile body (6.43% → 73.69%), air temperature in Otemachi was reduced by the maximum of 0.3 deg C.
- Air temperature decrease in a **pedestrian space** was large.
- Air temperature decrease was mainly due to a **reduction in anthropogenic heat from car air-conditioners**.
6. Conclusion

◆ Application of solar reflective paint (SRP) to an automobile
- SRP is installed as heat shield sheets on an automobile body.
- Simple coating by SRP actualizes by replacement of pigments.
- SRP raises a solar reflectivity in an typical car by an average of 17.5%, without a change of color.

◆ Energy conservation effect by SRP
- SRP is suitable technology for an automobile which has very small heating load or does NOT use air-conditioners when heating.
- SRP will bring about small improvement of actual fuel efficiency which is about 0.2% to 0.9%.
- Because SRP is one of low-cost technologies, an introduction of SRP contributes the reduction in CO$_2$ emissions from a transportation sector.

◆ Urban heat island mitigation effect by SRP
- An installation of SRP also reduces air temperature in business districts, especially pedestrian spaces.
Thank you for your attention.