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Impervious surface area (ISA) from the Landsat TM-based NLCD 2001 dataset and land surface temperature
(LST) from MODIS averaged over three annual cycles (2003–2005) are used in a spatial analysis to assess the
urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and
ecological setting for 38 of the most populous cities in the continental United States. Development intensity
zones based on %ISA are defined for each urban area emanating outward from the urban core to the non-
urban rural areas nearby and used to stratify sampling for land surface temperatures and NDVI. Sampling is
further constrained by biome and elevation to insure objective intercomparisons between zones and
between cities in different biomes permitting the definition of hierarchically ordered zones that are
consistent across urban areas in different ecological setting and across scales.
We find that ecological context significantly influences the amplitude of summer daytime UHI (urban–rural
temperature difference) the largest (8 °C average) observed for cities built in biomes dominated by
temperate broadleaf and mixed forest. For all cities combined, ISA is the primary driver for increase in
temperature explaining 70% of the total variance in LST. On a yearly average, urban areas are substantially
warmer than the non-urban fringe by 2.9 °C, except for urban areas in biomes with arid and semiarid
climates. The average amplitude of the UHI is remarkably asymmetric with a 4.3 °C temperature difference
in summer and only 1.3 °C in winter. In desert environments, the LST's response to ISA presents an
uncharacteristic “U-shaped” horizontal gradient decreasing from the urban core to the outskirts of the city
and then increasing again in the suburban to the rural zones. UHI's calculated for these cities point to a
possible heat sink effect. These observational results show that the urban heat island amplitude both
increases with city size and is seasonally asymmetric for a large number of cities across most biomes. The
implications are that for urban areas developed within forested ecosystems the summertime UHI can be
quite high relative to the wintertime UHI suggesting that the residential energy consumption required for
summer cooling is likely to increase with urban growth within those biomes.
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1. Introduction

In 2008 more than half of the world's population were urban
dwellers and the urban population is expected to reach 81% by 2030
(UNFPA, 2007). As the process of global urbanization accelerates both
in intensity and area there is growing interest in understanding its
implications with respect to a broad set of environmental factors
including net primary production (Imhoff et al., 2000), biodiversity
(Reid, 1998; Ricketts & Imhoff, 2003; Sisk et al., 1994 and others), and
climate and weather at local, regional, and global scales (Trenberth
et al., 2007).

Urbanheatingand the formationof theurbanheat island(UHI) is one
attribute of urban land transformation that is of interest across science
disciplines because theUHI signal reflects a broad suite of important land
surface changes impacting human health, ecosystem function, local
weather and possibly climate. TheUHI phenomenon is generally seen as
being causedby a reduction in latentheatflux andan increase in sensible
heat in urban areas as vegetated and evaporating soil surfaces are
replaced by relatively impervious low albedo paving and building
materials. This creates a difference in temperature between urban and
surrounding non-urban areas. This temperature differential was first
referred to as the Urban Heat Island by Manley (1958) and since then a
large effort has been devoted to the study of this important urban
phenomenon using both air temperature and surface temperature
(e.g. Grimmond & Oke, 2002; Quattrochi & Ridd, 1994; Shepherd &
Burian, 2003; Rosenzweig et al., 2005).

Many observational studies estimated the magnitude of UHI by
comparing ground based observed air temperature in urban and rural
weather stations (e.g., Oke, 1973). In general the air temperature
defined UHI has a strong diurnal cycle and is more important at night.
The potential impact of UHI's on long term air temperature trend
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Table 1
The top 38 most populated urban areas in the continental U.S. used in this study
grouped by biome.

Biome Cities

FE
Temperate broadleaf and mixed
forest (northern group)

Baltimore MD, Boston MA Cleveland OH,
Columbus OH, Washington DC, Detroit MI,
Milwaukee WI, Minneapolis MN, New York NY,
Philadelphia PA Pittsburgh PA

FA
Temperate broadleaf and mixed
forest (southern group)

Atlanta GA, Charlotte NC, Memphis TN

GN
Temperate grasslands, savannahs
and shrublands

Chicago IL, Oklahoma City OK, Omaha NE,
Saint Louis MO, Tulsa OK, Wichita KA,
Kansas City, KS

DE
Desert and xeric shrublands Albuquerque NM, El Paso TX, Las Vegas NV,

Phoenix AZ, Tucson AZ

MS
Mediterranean forests,
woodlands, shrub

Fresno CA, Los Angeles CA ,Sacramento CA ,
San Diego CA, San Jose CA

GS
Temperate grasslands, savannahs
and shrublands

Austin TX, Dallas TX, San Antonio, TX

GT
Tropical and subtropical
grasslands, savannahs
and shrublands

Houston TX, New Orleans LA

FW
Temperate coniferous forest Portland OR, Seattle WA

We sub-divided Temperate Broadleaf andMixed Forests into a northern group (FE) and
a southern group (FA) otherwise all other biomes are as rendered by the Olson
ecoregions map (Olson et al., 2001).
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analyses is well known and a considerable effort has been made to
correct air temperature biases when comparing UHI effects across
different regions (e.g., Gallo et al., 1993; Hansen et al., 2001; Karl et al.,
1988; Kukla et al., 1986).

The urban heat phenomenon can also be characterized by surface
temperatures. While surface temperatures can be both higher and
more variable than concurrent air temperatures due to the complexity
of the surface types in urban environments and variations in urban
topography (e.g. Nichol, 1996; Streutker, 2002), they are more easily
related to surface conditions themselves (Nichol &Wong, 2005; Owen
et al., 1998; Voogt & Oke, 2003). Since surfaces heat and cool more
rapidly than air, the greatest surface temperatures are observed during
midday versus nighttime for air temperature (Roth et al., 1989).

Our interest is in the surface UHI effect because the conversion of
surfaces more directly links to the alteration of a broader suite of
physical and biophysical processes related to the intensity and
trajectory of land cover change. Moreover, we are interested both in
how the UHI varies as a function of the intensity of urban land
conversion as well as ecological context.

Remotely-sensed data of land surface temperature, vegetation index,
and other surface characteristics have been widely used to describe UHI
phenomenon (Gallo & Owen, 1999; Gallo et al., 1993; Weng et al., 2004)
but comparisons across different urban areas have been hampered by the
lack of objectively quantifiable and commonly agreedupondefinitions for
urban density, and urban versus non-urban area. The development of
impervious surface area (ISA) data derived from30mLandsat ETM+and
IKONOS imagery (Yang et al., 2002; Homer et al., 2004) is a reasonable
solution providing a continental-wide map of impervious surface
fractional areas. The ISAdataestimate the relativeamountof impenetrable
surface area, such as pavements for roads and parking lots and roofing
materialswhich in aggregate have been identified as a key environmental
indicator of urban land use and water quality (Arnold & Gibbons, 1996).
The ISA data have been used successfully in combination with other
comparable resolution remotely sensed data of land surface temperature
and vegetation indices to characterize temperature differences (Xian &
Crane, 2005; Yuan & Bauer, 2007).

While these detailed studies provide an excellent basis for
understanding the fine scale processes, the broader consequences of
ecological context are often overlooked. The strength of urban land
transformation as a driver or forcing of change depends upon its
ecological context (i.e., the type of land surface that is being altered
relative to the broader landscape functional groupings), the degree to
which the previous physical and biophysical systems are altered, and
the extent and distribution of the altered surfaces. While in general
the amplitude of the urban heat island has been positively correlated
with urban density, it is a relative measure (urban – rural
temperature). This means that the ecological context has conse-
quences on both intensity and sign through its influence on the
thermal characteristics of the rural area. A weak urban heat island or
urban heat sink phenomenon, for example, has been observed in
semi-arid and arid climates (where the rural areas are desert shrub-
land) despite high urban densities (Bounoua et al., 2009; Brazel et al.,
2000; Lougeay et al., 1996; Pena, 2008; Shepherd, 2006).

Furthermore, as a driving process at the landscape level, the non-
random placement of urban infrastructure also has an effect. Altering
relatively small but naturally resource rich areas can have a larger
impact on certain processes than larger alterations on functionally
less important ones. Much of this of course depends on the process of
interest. Imhoff et al. (2000), Imhoff et al. (1997) and Nizeyaimana et
al. (2001) for example showed that because urbanization in the U.S.
has taken place on the most naturally productive soils it has had a
disproportionately large impact on continental scale potential Net
Primary Production (NPP). Urbanizing less than 3% of the land surface,
for example, was enough to offset the gains in NPP made by the
conversion of 29% of the land surface to agriculture because the urban
land conversion took place on the best soils. A similar case has been
made for assessing urbanization risk to biodiversity (Reid, 1998;
Ricketts & Imhoff, 2003; Sisk et al., 1994).

In this paper we use a combination of satellite and ecological map
data to characterize and inter-compare the UHI response across
biomes in the continental U.S.We examine the relationship between %
ISA and land surface temperature across many cities, calculate
seasonal UHI for cities in similar ecological settings, and compare
the amplitude of the UHI for the major biomes.

2. Methods and data

2.1. Terrestrial ecoregions

One of our primary objectives is to study the influence of ecological
context on UHI amplitude for varying urban densities. Since the degree
to which urbanization alters ecosystem function or state is relative to
what was there before, the ecological setting within which the process
occurs establishes the baseline conditions for quantifying change. To
allow comparisons of urban places within and between settings we use
the terrestrial ecoregions map developed by Olson et al. (2001) to
stratify the analyses and constrain the sampling around each urban area
according to its biome. The ecoregions map divides the continental
United States into 10 biomes each representing an assemblage of
biophysical, climate, botanical, and animal habitat characteristics
defining a distinct geographical area. We chose to stratify sampling of
U.S. cities using this perspective because climate factors are contained in
them as well as other biogeographical information needed to under-
stand the dynamic arena within which ecological processes and
anthropogenic influences such as urbanization most strongly interact.
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In this study we analyze data for 38 of the most populated urban
areas in the continental United States occurring across six of the
largest biomes. We further subdivide two of the larger biomes in the
set (Temperate Broadleaf and Mixed Forest and Temperate Grass-
lands, Savannas and Shrublands) differentiating Northeast and Mid-
Atlantic forest and Northern versus Southern Mid-western grasslands
(Table 1). In this study, all temperature and NDVI data collected for an
individual urban area is included in the analysis only if they remain in
the dominant biome. This eliminates cross-over into different bio-
climatic environments as a potential contaminant of the observed
temperature differences within an urban area and allows grouping
and comparison of UHI effects by biome.

2.2. Classification of urban density

We use the impervious surface area (ISA) data from the Landsat-
derived, continental scale land cover map (NLCD) in a Geographic
Information System-based spatial analysis to identify individual urban
areas, stratify them internally according to ISA density, and estimate
their size. The fractional area impervious surfacedatawerederivedusing
Landsat 7 ETM+ and IKONOS differentiating man-made surfaces from
natural or vegetated surfaces (see Yang et al., 2002). While this
parameter does not contain retrievable information about albedo or 3-
D structure, it captures development intensity as a function of the extent
and spatial distribution of the collection of man-made surfaces within a
pixel. Conversion intensity based on ISA can be related to changes in the
Fig. 1. Urban area definition using impervious surface area (ISA) thresholds on the NLCD 20
Panel B shows 676 urban polygons defined by 50% imperviousness contour; Panel C shows
define the urban–suburban boundary. Panel D shows the close spatial matching between th
spatial overlap ensures that the emissivities assigned to the MODIS LST split-window algori
Urban1, and Urban2).
biophysics of the land surface including sensible and latent heat fluxes
within the urban surface and boundary layers through comparison with
other spatially co-registered data.Most recently, Yuan and Bauer (2007)
and Xian & Crane (2005) demonstrated that ISA data developed from
ETM+ and the NLCD could be used to make rigorous comparisons of
urbandensity and surface temperature at local scales suggestingbroader
application would be possible with appropriate temperature data.

We use a 25% ISA threshold to define polygons in the Landsat-based
thematic data. The 25% threshold identifies a reasonable boundary
between urban and low intensity residential lands (Lu & Weng, 2006)
and provides reasonably spatially coherent urban groupings (Fig. 1). As
such the polygons we define here overlap named cities but do not
necessarily match incorporated or cadastral (administrative) bound-
aries. Most important; however, is the close match between the area
defined by the 25% ISA threshold and the MODIS landcover map
classifyingUrbanBuilt-Up land (Fig. 1d).MODIS LST retrieval algorithms
rely on thismap for estimating surface emissivity (Wan et al., 2004) so a
close match here ensures that temperature comparisons within the
urban polygon are based on retrievals using the same parameter sets.

Once individual city place urban polygons are defined we further
stratify the landscape within and around them using classes based on
ISA and distance. In this paper we define five zones based on classes of
% ISA in concentric rings emanating outward from the highest ISA in a
city to the lowest: 1) Urban Core=pixels having 75% to 100% ISA
(these are the highest in a city polygon); 2) Urban1=pixels having
ISA between 75% and 50% (75%>ISA≥50%); 3) Urban2=pixels
01 dataset. Panel A shows one uninterrupted city polygon defined by 25% ISA contour;
5300 polygons defined by 75% imperviousness contour. We use the 25% ISA contour to
e 25% ISA contour and the MODIS landcover class for urban and built-up land. The close
thm for temperature retrieval are the same within the three urban zones (Urban Core,
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having between 50% and 25% ISA (50%>ISA≥25%) — this is the last
urban zone and its outer boundary identifies the 25% threshold;
4) Suburban=pixels located in a buffer zone 0–5 km adjacent to and
outside the 25% ISA contour (pixels have less than25% ISA); and5) Rural
(or non-urban)=pixels located in a 5 kmwide ring located between 45
and 50 km away from the 25% ISA contour and having less than 5% ISA
(Fig. 2a,b). This rural ring is chosen to be at an optimal distance far
enough from the urban core to represent a remote rural area yet not too
far to infringe into the 25% contour of an adjacent urban area or another
biome. Pixels that fall into overlapping biomes, other urban areas or
topographic elevations ±50m off themean elevation of the urban core
are excluded from the analysis.

2.3. Land surface temperature (LST) and NDVI

To characterize the surface temperature and the presence of
vegetation within the ISA zones, we useMODIS-Aqua Version 5, 8-day
composite (MOD11A2) LST with high quality control (Wan et al.,
2004) and 16-day composite NDVI (Huete et al., 1994, 1997) at
1km×1km resolution (both covering 2003 to 2005). LST's from
MOD11A2 are retrieved from clear-sky (99% confidence) observations
at 1:30 PM and 1:30 AM using a generalized split-window algorithm
(Wan & Dozier, 1996). The coefficients used in the split window
algorithm are given by interpolating a set of multi-dimensional look-
Fig. 2. Panels A and B show examples of the typical layout of the five urban zones defined for
zone is composed of pixels with less than 25% ISA occurring within a 5 km wide ring adjacen
25% ISA contour composed of pixels with less than 5% ISA. Pixels that cross biomes or signi
MODIS LST averages from the Urban Core and Rural zones. Panel C shows the cities used in
up tables (LUT) derived by linear regression of MODIS simulation data
from radiative transfer calculations over wide ranges of surface and
atmospheric conditions. These look up tables have been continuously
upgraded (Wan et al., 2004) and comparisons between MODIS LST's
and in-situ measurements across a wide set of test sites indicate the
accuracy is better than 1 Kwith an RMS (of differences) less than 0.5 K
in most cases (Wan, 2008; Wang et al., 2008).

The LST data are used to characterize the horizontal temperature
gradient across the urban area and NDVI is used to describe the
vegetation density temporal variation for each urban zone. As
mentioned previously, temperature and NDVI data for each zone in
an urban area are only collected if they remain in the dominant biome
for that city. This eliminates cross-over into different bio-climatic
environments as a potential contaminant of the observed tempera-
ture differences within an urban area and allows grouping and
comparison of UHI effects by biome.

2.4. Topographic and population data

Topographic data are used as a filter to exclude from the analysis
temperature differences due to elevation and shading. We use the
~925 m SRTM30 (Farr & Kobrick, 2000) dataset to determine a mean
elevation of the urban area and exclude from analysis all pixels whose
elevation is outside the +/−50m window from the mean elevation.
each city. Urban Core, Urban1 and Urban2 are based on %ISA of each pixel. The Suburban
t to the 25% ISA contour. The Rural zone is a ring that is 45–50 km in distance from the
ficant changes (±50 m) in elevation are excluded. UHI (urban–rural) calculations use
this analysis and their biomes according to Olson et al. (2001).
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We also use the 30arc sec (~925 m) US Census Grids 2000
(Deichmann et al., 2001) produced by the Center for International
Earth Science Information Network to characterize the population.

3. Results and discussion

3.1. The UHI and ecological context

Using the population data, we identified 38 of the most populated
urban areas in the continental United States distributed over eight
different biomes (Table 1, Fig. 2c). For each urban area, a spatial
stratification defining the five ISA zones is applied. A 0.1 NDVI
threshold is used to exclude water, bare soil and other non-vegetated
pixels from the spatial and temporal average in the rural zone of each
urban area.

For all cities across the biomes, the impervious surface area
decreases from the urban core with about 80% average ISA to the rural
area where all pixels have less than 5% ISA. Also, the average
impervious surface fraction within the five zones identified in each
city is remarkably similar indicating that the ISA zonal classification is
sufficiently consistent for inter-comparison (Fig. 3a). The average
summer daytime MODIS land surface temperature (1:30 PM local
time averaged for June, July and August) for all cities and zones show
that temperatures increase with ISA in all cases except urban areas in
desert and xeric shrubland ecoregions (DE) (Fig. 3b). Despite the
Fig. 3. Average remotely-sensed parameters of the five zones (see Fig. 2) for cities in each of
area (%), Panel B shows the average summer (Jun–Aug) MODIS NDVI for each zone in each gr
surface temperature derived from MODIS product.
difference in spatial resolution, the MODIS 1 km NDVI tracks the ISA
data remarkably well showing an increase outward from the urban
core in all biomes except DE which shows a convex pattern (Fig. 3c).
The anomalous NDVI and LST patterns for desert and xeric shrubland
cities is likely a result of increased vegetation and latent heat flux in
less dense 50–25% urban and suburban fringe areas due to resource
(water) augmentation in those areas. This pattern has been noted
previously for U.S. desert cities using AVHRR (Imhoff et al., 2004) and
Landsat (Xian & Crane; 2005).

In terms of the UHI, we calculated the average temperature
differences (Urban Core LST−Rural LST) for all the cities in each
biome for summer (June/July/August) and winter (December/Janu-
ary/February) daytime (1:30 PM) and nighttime (1:30 AM). The UHI
responses for the eight different biomeswere all significantly different
(p=0.01) and clearly show the effect of ecological context on
seasonal and diurnal UHI amplitudes (Fig. 4). As expected, with
surface temperatures the greatest temperature differences are noted
in daytime (Roth et al., 1989). On average we found that the summer
UHI was significantly larger than the winter UHI. Energy demand in
metropolitan areas is determined by a complex variety of factors
related to the nature of the demand, the spatial distribution of high
demand centers and numerous other factors. However, our results
suggest that for residential areas potential increases in cooling
requirements in summer would more than offset gains realized by
heating in winter. The amplitude of summer daytime UHI appears to
the eight biomes defined in this study. Panel A represents the fractional imperviousness
oup, and Panel C shows the average summer daytime (around 1:30 PM local time) land



Fig. 4. Average urban heat island for cities in the different biomes (please refer to Table 1 and Fig. 2 for the definition biomes). Urban temperature is chosen from the most inner
contour (Urban Core) of each city and the Rural temperature is the average of all the non-impervious pixels (ISA<0.1%) in the outermost contour (45–50 km buffer ring).
Temperature differences for four periods are examined; average summer (Jun–Aug) daytime LST (1:30 PM), average summer nighttime LST (1:30 AM), average winter (Dec–Feb)
daytime, and average winter nighttime LST.
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be related to the standing biomass of the surrounding biome
decreasing from forests to grasslands and reversing to a heat sink in
desert cities. The largest average summer daytime UHI (7 to 9 °C) for
example is noted for cities displacing temperate broadleaf, mixed, and
temperate coniferous forest biomes (FE, FA, and FW). In high biomass
forested biomes, urban areas are surrounded by dense and tall
vegetation which intercepts and re-evaporates precipitation at
Fig. 5. A comparison of remotely-sensed parameters of the five urban zones found for a city in
shrublands (Las Vegas, Nevada, USA). Panel A represents the average imperviousness area (
average summer daytime MODIS LST for each zone.
potential rates and diffuses water from the deep soil to the
atmosphere during the process of photosynthesis, thus keeping the
surrounding regions much cooler than the less vegetated urban core.
In contrast, urban areas dominated by shorter low biomass vegetation
such as grassland, shrublands and savannah (groups GN, MS, GS and
GT) produce a less intense UHI with amplitudes ranging from 4 to
6 °C. In these regions, the zones surrounding the Urban Core are
temperate broadleaf andmixed forest (Baltimore, Maryland, USA) and desert and xeric
%), Panel B shows the average summer (Jun–Aug) MODIS NDVI, and Panel C shows the



Fig. 6. Composite averaged summer (Jun–Aug) daytime LST profile from MODIS across
all urban zones. Baltimore (black triangles) located in temperate forests and Las Vegas
(black squares) in a desert. Averages are computed from 12 cross-sections obtained at
15° interval and for 180° around the urban area. The entire profile is finally obtained
using symmetry with respect to the urban center.

Table 2
The linear parameters relating average summer (Jun–Aug) daytime (1:30 PM) MODIS
LST anomaly (dependent) and impervious surface area anomaly (independent) for the
38 top population cities in the continental U.S. grouped by the biomes in which they
reside.

Biomes Linear fit

R2 Slope (with 95% confidence interval) P-value

All combined 0.70 0.073 <0.0001
0.066–0.080

FE 0.92 0.107 <0.0001
0.098–0.115

FA 0.86 0.092 <0.0001
0.069–0.114

GN 0.89 0.077 <0.0001
0.067–0.086

DE a a a

MS 0.80 0.078 <0.0001
0.061–0.095

GS 0.86 0.066 <0.0001
0.050–0.081

GT 0.73 0.058 0.002
0.029–0.086

FW 0.86 0.092 <0.0001
0.062–0.122

Data for five zones are used in each city: 1) Urban Core (75%>ISA≥50%); 2) Urban1
(75%>ISA≥50%); 3) Urban2 (50%>ISA≥25%); 4) suburban (pixels located in a buffer
zone of 0–5 km adjacent to and outside the 25% ISA contour); and 5) Rural (non-urban
pixels located in a 5 kmwide ring located between 45 and 50 km away from the 25% ISA
contour). LST data were collected between 2003 and 2005.

a Linear fit is not significant for desert cities.
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sparsely vegetated and restore an important part of the absorbed solar
energy as sensible heating; thus reducing the horizontal temperature
gradient between the Urban Core and the Rural Zone. In urban areas
surrounded by deserts and xeric shrublands (DE) this temperature
contrast weakens and even reverses. The summer daytime UHI data
for DE was actually slightly negative (−1 °C) and taken in isolation it
would tend to corroborate the heat sink effect noted for many desert
cities. However, the summer nighttime and winter daytime and
nighttime UHI's for DE are still positive and large enough to make the
cities warmer overall than the outlying areas. Urban areas in the DE
biomewere also the only ones to consistently show a larger nighttime
UHI effect. To further examine the influence of ecological context we
compare average summer daytime LST across ISA zones for Baltimore,
Maryland, located in the Northeastern Temperate Broadleaf and
Mixed Forest (group FE) and Las Vegas, Nevada, an urban area built
within the Desert and Xeric Shrubland biome and arid climate
conditions (Fig. 5).

The twourbanareas are similarwith respect to theaverage fractional
ISA found in each of the defined urban zones (Fig. 5a); however, the
density of the vegetation surrounding them, as illustrated by the NDVI
(Fig. 5b) is sharply different. The NDVI difference between the Rural
Zone and the Urban Core is 0.4 in Baltimore and less than 0.1 for Las
Vegas. In LasVegas; however, the vegetationdensity increases (initially)
away from the Urban Core (e.g., Urban1, Urban2 and Suburban) then
drops again in the Rural Zone. This suggests that the less dense urban
zones (Urban2 and Suburban) in Las Vegas are supporting plant growth
(e.g., exotic tree and shrub species and lawns through irrigation) at a
rate greater than that of the surrounding biome (Imhoff et al., 2004).
These two cities demonstrate the importance of ecological context as
amodulator of the UHI effect. While the urban core in Baltimore creates
a well-defined UHI with amplitude of 9.3 °C, in Las Vegas, it points to a
possible heat sink (about 0.5 °C — a small number relative to the
accuracy of the MODIS LST product). If only the Urban2 zone (50–25%
ISA) in Las Vegas is compared to its rural zone, there is a temperature
increase of 1.6 °C. These results at least trend in the direction of a
potential heat sink effect for arid cities postulatedby some(e.g. Bounoua
et al., 2009; Shepherd, 2005, 2006). Composite averaged summer day
LST profiles across theUrban Core for the two urban areas are illustrated
in Fig. 6.

3.2. Quantifying the relationship between LST and ISA

We quantify the relationships between the fractional area of
impervious surfaces and the UHI by analyzing the LST and ISA
anomalies for all 38 urban areas. The close spatial overlap of the
MODIS landcover (urban built-up) with the three urban zones we
define in this study (Urban Core, Urban1 and Urban2) ensures that the
emissivities assigned to the MODIS LST split-window algorithm for
temperature retrieval are mostly the same (Fig. 2d). Even though the
differences in the emissivities are small this further reduces the
possibility of LUT induced signal in the comparison of LST's between
ISA zones (Wan, 2008).

For each urban polygon we compute the mean summer daytime
LST anomaly of each zone by subtracting from its LST the average
obtained over all five zones. As expected, changes in ISA fraction
strongly affect changes in LST. For all of the urban areas combined,
changes in ISA control about 70% of the variance in LST. In general, at a
0.001 significance level, about 60–90% of the variance in LST is
explained by changes in ISA and these results are well in line with
similar comparisons of ISA and LST for the Twin Cities Metroplex in
Minnesota (Yuan & Bauer, 2007). With the exception of DE, in general
there is positive relationship between LST and ISA. We found the ISA/
LST relationship to be strongest for urban areas in forested biomes
(e.g., group FE, FA and FW) where variations in ISA explain more than
85% of the variation in LST (Table 2, Fig. 7a). We also note that the rate
of change in LST as a function of ISA is different for urban areas in
forested biomes forests versus those characterized by short vegeta-
tion. For example, at 95% confidence limit, the slope of the linear fit is
10% for temperate forested groups FE, FA, and FW while it is only 6%
for shorter vegetations (e.g., group GN, MS, GS, and GT). This implies
that the rate of temperature increase with ISA is influenced by
ecological context (i.e., regional climate, surrounding vegetation,
soils) as well as its impervious surface fractional area driven
evaporation capacity. One possible explanation for this is that short
vegetation surrounding urban areas in the southern and central parts
of the country will experience heat stress more quickly than forest
vegetation. This would cause a more frequent reduction of the
transpiration rates in those biomes thereby increasing the surface



Fig. 7. The relationship between the ISA anomaly and the summer daytime LST anomaly for U.S. cities in temperate broadleaf and mixed forest (FE) and desert and xeric shrublands
(DE). The response in all other biomes is similar to FE. The x-axis represents the ISA anomaly by subtracting the mean ISA of the zones for each city and the y-axis represents the
summer day LST anomaly by subtracting the mean LST for each city.
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temperature at canopy level and contribute to the attenuation of the
thermal contrast between the urban core and the surroundings.

For the desert groups, a polynomial relationship better describes
the LST and ISA anomalies (Fig. 7b). The polynomial relationship
explains about 26% of the LST variance in the five desert urban areas
(group DE). Remarkably, however, if only Las Vegas and Phoenix are
considered, more than 70% of the LST variance is explained by changes
in ISA. This would indicate that there is considerable variation in the
UHI response for desert cities possibly due to differences within the
biome or the physical characteristics of the urban surfaces such as
albedo and 3D structure not identifiable in the ISA data.

The heat island effect tends to be strongly dependent on the
presence of vegetation within the different urban zones. For instance
in Las Vegas and Phoenix, the coolest summer surface temperature is
found in the third zone (Urban2) which has a fractional ISA between
50% and 25% and the highest NDVI. From this zone, LST increases in
both directions (inward towards the urban hot core and outward
towards the surrounding rural desert) by about 1 °C. The surface
temperature in the urban core is similar to that of the desert for an ISA
anomaly of about 40%.
Fig. 8. Temperature difference between urban and the surrounding rural region for 45
sampled Northeast cities in four groups with different city area: 1–10 km2, 10–100 km2,
100–1000 km2, and >1000 km2. Urban temperature is chosen from the most inner
contour of each city and the rural temperature is the average of all the non-impervious
pixels (ISA<0.1%) in the most outer contour (15–20 km buffer ring). For each city,
temperature differences for four different periods are examined: average summer (Jun–
Aug) daytime LST (1:30 PM), average summer nighttime LST (1:30 AM), average winter
(Dec–Feb) daytime LST, and average winter nighttime LST.
3.3. UHI and urban extent in temperate forest setting

To examine the relationship between the total size of the urban
area and the amplitude of the UHI we compare the total area of each
urban polygon (summed areas of zones ISA 25% and greater) to the
Urban Core–Rural temperature difference for 45 randomly selected
cities within the NE biome. This sample set includes those cities listed
in Table 2 under FE plus 34 additional cities located in that biome. Size
in this case is the total contiguous area for an urban polygon defined
by the 25% ISA threshold. We group the 45 cities based on size and
analyze diurnal and seasonal UHI (Fig. 8). Our analysis indicates that
for cities within this biome, the summer daytime UHI is strongly
correlated to size. For instance, the averaged UHI is about 1.5 °C for
urban areas smaller than 10 km2, while it about 10 °C for urban areas
larger than 1000 km2 (Fig. 8). This relationship holds true during the
winter but with a much weaker UHI amplitude ranging from about
2.0 °C for urban areas smaller than 10 km2 to 3.5 °C for urban areas
larger than 1000 km2. A similar pattern is observed during the
nighttime. The difference between the summer and winter UHI
amplitude is indicative of the vegetation function in these temperate
mixed forests. During summer when vegetation is physiologically
active, the evaporative cooling is strong during the day and creates a
pronounced UHI between impervious and vegetated zones. During
winter, the contrast between the urban and rural zones is subdued
when leaves are off and photosynthetic activity is down-regulated by
cold temperatures. During summer nighttime, the UHI persists in all
urban areas but with smaller amplitudes ranging from 1 °C for urban
areas less than 1 km2 to 3.5 °C for those urban areas larger than
1000 km2. During winter nights, the UHI effect is less than 1 °C for the
largest urban area.

Within the Northeastern temperate broadleaf mixed forest biome,
the relationship between the UHI amplitude and total urban area is
consistent among all of the cities (Fig. 9). The relationship between
the UHI amplitude and size is log–linear and is given by:

ΔTUrban–Rural = 3:48logðAreaÞ + 1:75

and explains about 71% of the variance in UHI with a standard error of
±1.6 °C. This result is similar to the log–linear relationship between



Fig. 9. The relationship between urban heat island and urban area size in Northeastern
U.S. urban areas. The urban area size is defined as the total area surrounded by the 25%
imperviousness contour of each city.
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the UHI and the population size described in Oke (1973, 1976) and
Landsberg (1981) only here we relate it directly to the size of the
transformed surface (i.e., total area in a city having ISA≥25%).

4. Summary

In this study we combine remote sensing data from different
platforms to assess the urban heat island amplitude and its
relationship to urban spatial structure and size for a large number of
cities across a variety of eco-climatic regions over the continental
United States. We use a Landsat ETM+ and IKONOS based dataset
estimating the fractional area of impervious surfaces at 30 m and
compare them to 1 km land surface temperature data from theMODIS
instrument on the Aqua satellite for 38 of the most populous cities in
the continental United States.

In general we find that the fraction ISA is a good predictor of LST
for all cities in the continental United States in all biomes except
deserts and xeric shrublands. The fraction of ISA explains about 70% of
the total variance in LST for all cities combined with the highest
correlations (90%) in the Northeastern U.S. where urban areas are
embedded in temperate broadleaf and mixed forests. More impor-
tantly, these correlations are consistent for small, medium and large
urban areas. In most biomes, the LST is linearly proportional to the ISA
fraction. The relationship between temperature and ISA for urban
areas in deserts and xeric shrublands is more complicated requiring a
second order polynomial with large variations in outcome if the
analysis is conducted on fewer cities in the group. In desert type
ecosystems suburban zones with moderate ISA fractions are cooler
than the surrounding rural desert fringe and the urban core where ISA
is usually above 75%.

In terms ofUHI's andbiomes our results showthat ecological context
is a statistically significant modulator of the diurnal and seasonal UHI's
in the continental United States. The largest (urban–rural) temperature
differences for all biomes are found for summermidday and the greatest
amplitudes are found for urban areas displacing forests (6.5–9.0 °C)
followed by temperate grasslands (6.3 °C), and tropical grasslands and
savannas (5.0 °C) respectively. Urbanization initiates a differential
heating process between impervious surfaces, generally made of
concrete and other heat absorbing materials, and the surrounding
naturally vegetated landscapes. The contrast between urban cores and
rural zones is driven by the surrounding land use type and is often
accentuated during the time when the vegetation is physiologically
active, especially in forested lands. In biomes with short vegetation the
contrast is less. Similarly, the amplitude of the UHI is significantly
diminished during thewinter seasonwhen vegetation loses its leaves or
is stressed by lower temperatures. Urban areas in deserts behave
differently showing very little change relative to their non-urbanized
surroundings. Our data show an overall heat sink pattern similar to that
described by previous studies (e.g., Brazel et al., 2000; Pena, 2008);
however,while ourfindings are consistentwith theory, the temperature
differences we find here are small (between 0.2 and 2.2 °C) relative to
the known accuracy of theMODIS LST product. In this paper we begin a
characterization and inter-comparison of the UHI in the continental
United States from a biomes perspective. This approach allows a broad-
scale appreciation of how ecological context influences UHI's. However,
it does not reveal the complexities found in most urban environments
where significant ecological variation is present at the finer scale. A
logical next step to this characterization would be to use higher spatial
resolutionbiome information capable of showing ecoregional variations
within a city. Such an approach would permit city-scale investigations
about the interplay betweenurban surfaces and their ecological settings
and their impact on UHI and other related environmental issues.

Finally, this research highlights a significant positive relationship
between the urban heat island magnitude, the size of the urban area,
and ecological setting estimated entirely from remotely sensed
observations. The use of ISA as an estimator of the extent and
intensity of urbanization is more objective than population density
based methods and can be consistently applied across large areas for
inter-comparison of impacts on biophysical processes. Overall, our
results suggest that remotely-sensed land surface temperature
provides an adequate characterization of both the magnitude and
spatial extent of the urban heat island and allow objective
comparisons of urban heat island effects around urban areas of
different sizes at continental scales without the significant bias
encountered in conventional ground observations.
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